Mapping protein-specific micro-environments in live cells by fluorescence lifetime imaging of a hybrid genetic-chemical molecular rotor tag.
نویسندگان
چکیده
The micro-viscosity and molecular crowding experienced by specific proteins can regulate their dynamics and function within live cells. Taking advantage of the emerging TMP-tag technology, we present the design, synthesis and application of a hybrid genetic-chemical molecular rotor probe whose fluorescence lifetime can report protein-specific micro-environments in live cells.
منابع مشابه
Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging.
The fluorescence intensity and lifetime of the 4,4'-difluoro-4-bora-5-(p-oxoalkyl)phenyl-3a,4a-diaza-s-indacene (1) show a strong correlation with the viscosity of the medium due to the viscosity-dependent twisting of the 5-phenyl group, which gives access to the dark nonemissive excited state. We propose a sensitive and versatile method for measuring the local microviscosity in biological syst...
متن کاملA homodimeric BODIPY rotor as a fluorescent viscosity sensor for membrane-mimicking and cellular environments.
Fluorescence properties of a novel homodimeric BODIPY dye rotor for Fluorescence Lifetime Imaging Microscopy (FLIM) are reported. Steady state and time resolved fluorescence measurements established the viscosity dependent behaviour in vitro. Homodimeric BODIPY embedded in different membrane mimicking lipid vesicles (DPPC, POPC and POPC plus cholesterol) is demonstrated to be a viable sensor fo...
متن کاملFluorescence Lifetime Imaging of Molecular Rotors in Living Cells
Diffusion is often an important rate-determining step in chemical reactions or biological processes and plays a role in a wide range of intracellular events. Viscosity is one of the key parameters affecting the diffusion of molecules and proteins, and changes in viscosity have been linked to disease and malfunction at the cellular level. While methods to measure the bulk viscosity are well deve...
متن کاملPrecise fluorophore lifetime mapping in live-cell, multi-photon excitation microscopy
Fluorophore excited state lifetime is a useful indicator of micro-environment in cellular optical molecular imaging. For quantitative sensing, precise lifetime determination is important, yet is often difficult to accomplish when using the experimental conditions favored by live cells. Here we report the first application of temporal optimization and spatial denoising methods to two-photon time...
متن کاملFluorescence ratiometry and fluorescence lifetime imaging: using a single molecular sensor for dual mode imaging of cellular viscosity.
Intracellular viscosity strongly influences transportation of mass and signal, interactions between the biomacromolecules, and diffusion of reactive metabolites in live cells. Fluorescent molecular rotors are recently developed reagents used to determine the viscosity in solutions or biological fluid. Due to the complexity of live cells, it is important to carry out the viscosity determinations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 48 69 شماره
صفحات -
تاریخ انتشار 2012